Spis treści

WYKAZ WAŻNIEJSZYCH OZNACZEŃ, SKRÓTÓW I DEFINICJI 6

1. WSTĘP .. 11

2. PRZYGOTOWANIE POWIERZCHNI PRZEDMIOTU DO NAGNIATANIA TOCZNEGO
 2.1. Wymagania dotyczące struktury geometrycznej powierzchni do nagniatania .. 19
 2.2. Metody przygotowania powierzchni do nagniatania ... 20
 2.3. Powierzchnie o profilach zdeterminowanych .. 25
 2.4. Wpływ kąta wierzchołkowego nierówności powierzchni do nagniatania na stan deformacji warstwy wierzchniej w procesie nagniatania 28
 2.5. Odchyłki zarysu nierówności powierzchni toczonej i nagniatanej 30
 2.6. Podsumowanie .. 31

3. ANALIZA STANU WIEDZY W ZAKRESIE KSZTAŁTOWANIA WW W PROCESIE NAGNIATANIA TOCZNEGO
 3.1. Zagadnienia podejmowane w literaturze ... 33
 3.2. Modelowanie procesu nagniatania .. 38
 3.3. Symulacje komputerowe procesu nagniatania .. 40
 3.4. Zjawisko powrotu sprężystego materiału nagniatanego 44
 3.5. Wnioski z analizy literatury ... 48

4. CELE NAUKOWE I KIERUNKI BADAŃ WŁASNYCH NAGNIATANIA TOCZNEGO
 4.1. Cele naukowe .. 50
 4.2. Kierunki badań własnych .. 51
 4.3. Aspekty praktyczne .. 52

5. MODELOWANIE PROCESU NAGNIATANIA TOCZNEGO
 5.1. Algorytm modelowania i analizy procesu nagniatania tocznego 54
 5.2. Założenia do modelowania procesu nagniatania tocznego 56
 5.3. Model materiałowy ciała sprężysto-lepko-plastycznego 59
5.3.1. Model dynamicznych naprężeń uplastyczniających 59
5.3.2. Przyrostowy model dynamicznych naprężeń uplastyczniających ... 60
5.3.3. Przyrostowe modele składowych tensora odkształceń całkowitych i tensora naprężeń ... 60
5.4. Wariacyjne sformułowanie przyrostowego równania ruchu 62
5.5. Dyskretne równanie ruchu .. 63
5.6. Całkowanie jawnych równań ruchu i deformacji ... 65
5.7. Zastosowanie metody elementów skończonych do modelowania procesu nagniatania tocznego ... 68
5.8. Implementacja numeryczna rozwiązywania dyskretyzowanych równań ruchu ... 69
5.9. Podsumowanie modelowania procesu nagniatania ... 70

6. ANALIZA I SYMULACJA NUMERCZNA PROCESU NAGNIATANIA TOCZNEGO Z UZWGLĘDNIENIEM JAKOŚCI POWIERZCHNI PO OBRÓBCE POPRZEDJĄCEJ

6.1. Opis aplikacji NAGNIATANIE 3D ... 73
6.2. Analiza wrażliwości ... 77
6.3. Deformacja nierówności oraz odkształceń zredukowanych w warstwie wierzchniej przedmiotu podczas nagniatania tocznego 79
6.4. Naprężenia zredukowane w warstwie wierzchniej przedmiotu nagniatanego tocznie .. 83
6.5. Rozkład naprężeń wynikowych w warstwie wierzchniej przedmiotu po nagniataniu tocznym .. 86
6.6. Siły kontaktowe i składowa normalna siły nagniatania 89
6.7. Prognozowanie jakości przedmiotu nagniatanego tocznie 94
6.8. Wnioski z analizy numerycznej ... 100

7. BADANIA ZJAWISKA POWROTU SPRĘŻYSTEGO MATERIAŁU PO PROCESIE NAGNIATANIA TOCZNEGO

7.1. Idea zjawiska powrotu sprężystego po procesie nagniatania tocznego ... 103
7.2. Badania zjawiska powrotu sprężystego na materiale modelowym i walidacja ... 104
7.2.1. Materiał modelowy ... 104
7.2.2. Badania zjawiska powrotu sprężystego w zależności od kąta wierzchołkowego nierówności ... 105
7.2.3. Symulacja komputerowa zjawiska powrotu sprężystego
w zależności od kąta wierzchołkowego nierówności 106
7.3. Badania wpływu odchylek zarysu nierówności powierzchni na powrót sprężysty materiału ... 109
7.3.1. Symulacja komputerowa .. 109
7.3.2. Badania eksperymentalne ... 111
7.4. Wnioski .. 113
8. BADANIA EKSPERYMENTALNE PROCESU NAGNIATANIA NAPOROWEGO TOCZNEGO REGULARNYCH, TRÓJKĄTNYCH NIERÓWNOŚCI POWIERZCHNI PO OBRÓBCE TOCZENIEM
8.1. Zastosowany materiał .. 115
8.2. Wpływ kąta wierzchołkowego nierówności powierzchni po toczeniu
na chropowatość powierzchni po obróbce nagniataniem 115
8.3. Nanochropowatość powierzchni po obróbce nagniataniem 120
8.4. Udział materiałowy powierzchni nagniatanej tocznie 129
8.5. Mikroskopowa analiza stanu powierzchni nagniatanej 129
8.6. Struktura metalograficzna warstwy wierzchniej po nagniataniu
w zależności od kąta wierzchołkowego nierówności po toczeniu 133
8.7. Badania mikrotwardości warstwy wierzchniej po nagniataniu
zdeterminowanych, trójkątnych nierówności przygotowanych
przez toczenie .. 137
8.8. Jakościowe zależności wpływu obróbki poprzedzającej
na efekty po nagniataniu ... 139
9. APLIKACYJNOŚĆ PROPONOWANEJ METODY NAGNIATANIA ZDETERMINOWANYCH, REGULARNYCH, TRÓJKĄTNYCH NIERÓWNOŚCI POWIERZCHNI PO TOCZENIU 141
10. PODSUMOWANIE .. 146
STRESZCZENIE .. 150
SUMMARY .. 152
ZUSAMMENFASSUNG ... 154
SPIS LITERATURY ... 157